Ordered Algebras and Logic

نویسندگان

  • GEORGE METCALFE
  • FRANCESCO PAOLI
  • CONSTANTINE TSINAKIS
چکیده

Ordered algebras such as Boolean algebras, Heyting algebras, lattice-ordered groups, and MV-algebras have long played a decisive role in logic, although perhaps only in recent years has the significance of the relationship between the two fields begun to be fully recognized and exploited. The first aim of this survey article is to briefly trace the distinct historical roots of ordered algebras and logic, culminating with the theory of algebraizable logics, based on the pioneering work of Lindenbaum and Tarski and Blok and Pigozzi, that demonstrates the complementary nature of the two fields. The second aim is to explain and illustrate the usefulness of this theory, both from an ordered algebra and logic perspective, in the context of the relationship between residuated lattices and substructural logics. In particular, completions on the ordered algebra side, and Gentzen systems on the logic side, are used to address properties such as decidability, interpolation and amalgamation, and completeness.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Filter Theory of Bounded Residuated Lattice Ordered Monoids

Bounded residuated lattice ordered monoids (R -monoids) are a common generalization of pseudo-BL-algebras and Heyting algebras, i.e. algebras of the non-commutative basic fuzzy logic (and consequently of the basic fuzzy logic, the Łukasiewicz logic and the non-commutative Łukasiewicz logic) and the intuitionistic logic, respectively. In the paper we introduce and study classes of filters of bou...

متن کامل

Ordered domain algebras

We give a finite axiomatisation to representable ordered domain algebras and show that finite algebras are representable on finite bases.

متن کامل

Classes of Fuzzy Filters of Residuated Lattice Ordered Monoids

The logical foundations of processes handling uncertainty in information use some classes of algebras as algebraic semantics. Bounded residuated lattice ordered monoids (Rl-monoids) are common generalizations of BL-algebras, i.e., algebras of the propositional basic fuzzy logic, and Heyting algebras, i.e., algebras of the propositional intuitionistic logic. From the point of view of uncertain i...

متن کامل

Meet-completions and ordered domain algebras

Using the well-known equivalence between meet-completions of posets and standard closure operators we show a general method for constructing meet-completions for isotone poset expansions. With this method we find a meet-completion for ordered domain algebras which simultaneously serves as the base of a representation for such algebras, thereby proving that ordered domain algebras have the finit...

متن کامل

Semi-linear Varieties of Lattice-Ordered Algebras

We consider varieties of pointed lattice-ordered algebras satisfying a restricted distributivity condition and admitting a very weak implication. Examples of these varieties are ubiquitous in algebraic logic: integral or distributive residuated lattices; their {·}-free subreducts; their expansions (hence, in particular, Boolean algebras with operators and modal algebras); and varieties arising ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2010